

KOD DNA Polymerase

Cat. Number: KOD

Storage: Store at -20°C.

Unit: 5U/uL, 100uL/vial

Sources: Thermococcus kodakaraensis., recombinant modified

Application

Broad range amplicon PCR

Description

KOD DNA Polymerase is a high fidelity thermostable DNA polymerase that exhibits $3' \rightarrow 5'$ exonuclease (proofreading) activity and results in a lower PCR mutation frequency.

KOD DNA Polymerase exhibits excellent processivity and elongation capability, showing a five-fold higher extension rate (100-130 nucleotides/second) and 10-15-fold higher processivity (>300 bases) than that from Pyrococcus furiosus (Pfu DNA polymerase). The elongation rate of this enzyme is approximately 2 times higher than that of Taq DNA polymerase.

Unit Definition

One unit is defined as the amount of enzyme that synthesizes 1 nmol of DNA within 3 minutes at 72°C.

Unit Assay Conditions

1X KOD Reaction Buffer, 125 µM dNTPs and 15 nM primed M13 DNA.

1X KOD Reaction Buffer

10 mM Tris-HCl (pH 8.8), 50 mM KCl, 1.5 mM MgCl2, 0.1% Triton X-100, 10% DMSO.

Storage Buffer

20 mM Tris-HCl (pH 8.0), 100 mM KCl, 1 mM DTT, 0.1 mM EDTA, 0.5% Tween® 20, 50% Glycerol.

Molecular Weight

Theoretical: 90,000 daltons.

Mutation Frequency

(Number of mutant base pairs / Number of total base pairs) X 100% = 0.02%

Protocol

- 1. We recommend assembling all reaction components on ice and quickly transferring the reaction to a thermocycler preheated to the denaturation temperature (95°C).
- 2. Set up each reaction as follows (Keep on ice):

Component	50 μl reaction	Final Concentration
10X KOD Reaction Buffer	5µl	1x
Forward Primer	variable	0.1 – 1.0 μM
Reverse Primer	variable	0.1 – 1.0 μM
10mM dNTPs	1ul	200 μM of each dNTP
Template DNA	variable	<1 ug
KOD DNA Polymerase	0.5μl	2.5 units/50 μl PCR
ddH2O	to 50µl	

- 3. Gently mix the solution a few times and spin down.
- 4. Perform PCR using the recommended thermal cycling conditions outlined below: (For maximum yield and specificity, temperatures and cycling times should be optimized for each new template target or primer pair)

STEP	TEMP	TIME
Initial Denaturation	95°C	5min
Denaturation 7	95°C	15-30sec
Annealing - 30 cycles	45-68°C	15-60sec
Extension	72°C	1min/kb
Final Extension	72°C	5min
Hold	4°C	

^{*}Annealing temperature: 5°C below the Tm of your primers.

Mg2+ and additives:

The optimal Mg2+ concentration of 1.5 mM empirically, as provided in the 1X KOD Reaction Buffer, will generate satisfactory amplification of most amplicons. However, in some difficult targets, Mg2+ can be improved by increasing 0.5-1.5 mM. Amplification of some cases, reactions may be improved with additives, like DMSO.